
Contents

Preface, xi

CHAPTER 1 ■ Introduction to Sensor Technology	1
SENSOR	1
STATIC AND DYNAMIC CHARACTERISTICS OF SENSOR	3
Introduction to Multifunction Sensor	6
Introduction to Integrated Sensor	8
BIBLIOGRAPHY	9
CHAPTER 2 ■ Multifunction Sensor	11
A. FEATURES OF A MULTIFUNCTIONAL SENSOR	12
B. RELIABILITY OF A MULTIFUNCTIONAL SENSOR, OXFORD UNIVERSITY AND FOXBORO COMPANY DEVELOPED THE CONCEPT OF A SELF-VALIDATING (SEVA) SENSOR.	12
TRUCK SAFETY MONITORING, A TACTILE SENSOR FOR 3-D FORCE MEASUREMENTS	13
EDDY CURRENT SENSOR FOR CRACK POSITION DETECTION	13
A MULTIFUNCTIONAL SENSOR FOR ELECTROLYTE CONCENTRATION	13
A FIBER ATTENUATION-BASED MULTIFUNCTIONAL OPTICAL FIBER SENSORS	14
MULTIFUNCTIONAL OPTICAL SENSOR MEASURES VARIATION OF HEIGHT AND TRANSLATION OF A SURFACE	14
MEASUREMENT OF THE CONCENTRATION AND TEMPERATURE OF A DIELECTRIC SOLUTION	14
MULTIFUNCTIONAL SENSOR FOR THE MEASUREMENT OF A TWO-PHASE STATE OF OIL/WATER IN PIPELINES	14

SIMULTANEOUS MEASUREMENTS OF ELECTRICAL CONDUCTANCE AND PROPAGATION TIME AND USING A PIEZOELECTRIC CERAMIC MULTIFUNCTIONAL TRANSDUCER	14
USING A MULTIFUNCTIONAL SENSOR FOR MEASURING THE ANGULAR POSITION WITH MAGNETIC FLUID	15
MATHEMATICAL MODELLING OF SENSOR	15
Probabilistic Sensor Model	15
Artificial Neural Network for Linearization and Calibration	16
Distributed Regression Method	17
Data-Based Modeling	17
SIGNAL RECONSTRUCTIONS OF MULTIFUNCTION SENSORS	17
RELIABILITY, FAULT DIAGNOSIS, AND SELF VALIDATION	19
APPLICATIONS OF MULTIFUNCTIONAL SENSORS	20
A. Bio Sensors	23
B. Environmental Applications	23
C. Medical Applications	23
BIBLIOGRAPHY	24
<hr/> CHAPTER 3 ■ Calibration and Linearization Technique	31
FUZZY-BASED LINEARIZATION METHOD	33
VERIFICATION OF FUZZY-BASED LINEARIZATION METHOD IN THE SIMULATION PLATFORM	36
IMPLEMENTATION OF FLM ON VIRTUAL INSTRUMENTATION PLATFORM	40
BIBLIOGRAPHY	47
<hr/> CHAPTER 4 ■ Multifunction Data Fusion	49
CLASSIFICATION OF METHODS OF MDF	49
APPLICATION OF MULTI-SENSOR DATA FUSION	51

CHALLENGES OF MULTI-SENSOR DATA FUSION (MDF) IN MULTI-SENSOR SYSTEMS	52
BIBLIOGRAPHY	52
<hr/>	
CHAPTER 5 ■ Case Studies	55
A. MULTIFUNCTIONAL SENSOR FOR MEASUREMENT OF TEMPERATURE AND LEVEL OF THE LIQUID	55
B. MEASUREMENT OF TEMPERATURE AND PRESSURE USING PIEZO-RESISTIVE SENSORS	56
C. MEASUREMENT OF LEVEL AND WATER CONTENT USING CAPACITIVE SENSING TECHNIQUE	57
D. LEVEL AND CONDUCTIVITY OF LIQUID USING INDUCTIVE SENSING TECHNIQUE	58
E. LEVEL AND QUANTITY OF ADDITIVE USING CAPACITIVE AND ULTRASONIC SENSING TECHNIQUES	58
F. LEVEL AND CONCENTRATION OF THE LIQUID USING PAU'S MULTI-SENSOR DATA FUSION	59
G. HUMIDITY, TEMPERATURE, AND LEVEL MEASUREMENT USING A MICRO-SENSOR	60
H. LEVEL AND CONCENTRATION OF THE LIQUID USING A CAPACITIVE SENSING TECHNIQUE	61
I. COMPENSATE FOR TEMPERATURE, LIQUID TYPE, HUMID AIR GAP, AND DUST	62
J. TEMPERATURE COMPENSATION OF LEVEL SENSORS	63
K. ACCURACY IMPROVEMENT OF A LEVEL SENSOR USING A CAPACITIVE SENSOR	64
BIBLIOGRAPHY	65
<hr/>	
CHAPTER 6 ■ Development of a Multifunctional Admittance-Type Sensor and Its Instrumentation for the Measurement of Liquid Level and Temperature	67
OVERVIEW	67
METHOD OF DECOMPOSITION USING THEORETICAL APPROACH	69

DESIGN OF FUZZY-BASED INFERENCE MECHANISM	72
METHODS AND MATERIALS	74
The Experimental Setup	74
Design of the VI	75
RESULTS AND DISCUSSIONS	81
Results Obtained for the Measurement of Water Level	83
ERROR AND UNCERTAINTY ANALYSIS	83
Error Analysis	83
Uncertainty Analysis	85
COMPARATIVE ANALYSIS	87
APPLICATIONS	88
CONCLUSION	89
BIBLIOGRAPHY	89
<hr/> <u>CHAPTER 7 ■ Summary</u>	91
INDEX, 93	