

Contents

Preface	xiii
<hr/>	
CHAPTER ONE	
An Introduction to the Use of Finite Element Procedures	1
1.1 Introduction	1
1.2 Physical Problems, Mathematical Models, and the Finite Element Solution	2
1.3 Finite Element Analysis as an Integral Part of Computer-Aided Design	11
1.4 A Proposal on How to Study Finite Element Methods	14
<hr/>	
CHAPTER TWO	
Vectors, Matrices, and Tensors	17
2.1 Introduction	17
2.2 Introduction to Matrices	18
2.3 Vector Spaces	34
2.4 Definition of Tensors	40
2.5 The Symmetric Eigenproblem $\mathbf{Av} = \lambda \mathbf{v}$	51
2.6 The Rayleigh Quotient and the Minimax Characterization of Eigenvalues	60
2.7 Vector and Matrix Norms	66
2.8 Exercises	72

CHAPTER THREE**Some Basic Concepts of Engineering Analysis and an Introduction to the Finite Element Method**

77

3.1 Introduction 77

3.2 Solution of Discrete-System Mathematical Models 78

- 3.2.1 *Steady-State Problems*, 78
- 3.2.2 *Propagation Problems*, 87
- 3.2.3 *Eigenvalue Problems*, 90
- 3.2.4 *On the Nature of Solutions*, 96
- 3.2.5 *Exercises*, 101

3.3 Solution of Continuous-System Mathematical Models 105

- 3.3.1 *Differential Formulation*, 105
- 3.3.2 *Variational Formulations*, 110
- 3.3.3 *Weighted Residual Methods; Ritz Method*, 116
- 3.3.4 *An Overview: The Differential and Galerkin Formulations, the Principle of Virtual Displacements, and an Introduction to the Finite Element Solution*, 124
- 3.3.5 *Finite Difference Differential and Energy Methods*, 129
- 3.3.6 *Exercises*, 138

3.4 Imposition of Constraints 143

- 3.4.1 *An Introduction to Lagrange Multiplier and Penalty Methods*, 143
- 3.4.2 *Exercises*, 146

CHAPTER FOUR**Formulation of the Finite Element Method—Linear Analysis in Solid and Structural Mechanics**

148

4.1 Introduction 148

4.2 Formulation of the Displacement-Based Finite Element Method 149

- 4.2.1 *General Derivation of Finite Element Equilibrium Equations*, 153
- 4.2.2 *Imposition of Displacement Boundary Conditions*, 187
- 4.2.3 *Generalized Coordinate Models for Specific Problems*, 193
- 4.2.4 *Lumping of Structure Properties and Loads*, 212
- 4.2.5 *Exercises*, 214

4.3 Convergence of Analysis Results 225

- 4.3.1 *The Model Problem and a Definition of Convergence*, 225
- 4.3.2 *Criteria for Monotonic Convergence*, 229
- 4.3.3 *The Monotonically Convergent Finite Element Solution: A Ritz Solution*, 234
- 4.3.4 *Properties of the Finite Element Solution*, 236
- 4.3.5 *Rate of Convergence*, 244
- 4.3.6 *Calculation of Stresses and the Assessment of Error*, 254
- 4.3.7 *Exercises*, 259

4.4 Incompatible and Mixed Finite Element Models 261

- 4.4.1 *Incompatible Displacement-Based Models*, 262
- 4.4.2 *Mixed Formulations*, 268
- 4.4.3 *Mixed Interpolation—Displacement/Pressure Formulations for Incompressible Analysis*, 276
- 4.4.4 *Exercises*, 296

4.5	The Inf-Sup Condition for Analysis of Incompressible Media and Structural Problems	300
4.5.1	<i>The Inf-Sup Condition Derived from Convergence Considerations</i>	301
4.5.2	<i>The Inf-Sup Condition Derived from the Matrix Equations</i>	312
4.5.3	<i>The Constant (Physical) Pressure Mode</i>	315
4.5.4	<i>Spurious Pressure Modes—The Case of Total Incompressibility</i>	316
4.5.5	<i>Spurious Pressure Modes—The Case of Near Incompressibility</i>	318
4.5.6	<i>The Inf-Sup Test</i>	322
4.5.7	<i>An Application to Structural Elements: The Isoparametric Beam Elements</i>	330
4.5.8	<i>Exercises</i>	335

CHAPTER FIVE _____
Formulation and Calculation of Isoparametric Finite Element Matrices 338

5.1	Introduction	338
5.2	Isoparametric Derivation of Bar Element Stiffness Matrix	339
5.3	Formulation of Continuum Elements	341
5.3.1	<i>Quadrilateral Elements</i>	342
5.3.2	<i>Triangular Elements</i>	363
5.3.3	<i>Convergence Considerations</i>	376
5.3.4	<i>Element Matrices in Global Coordinate System</i>	386
5.3.5	<i>Displacement/Pressure Based Elements for Incompressible Media</i>	388
5.3.6	<i>Exercises</i>	389
5.4	Formulation of Structural Elements	397
5.4.1	<i>Beam and Axisymmetric Shell Elements</i>	399
5.4.2	<i>Plate and General Shell Elements</i>	420
5.4.3	<i>Exercises</i>	450
5.5	Numerical Integration	455
5.5.1	<i>Interpolation Using a Polynomial</i>	456
5.5.2	<i>The Newton-Cotes Formulas (One-Dimensional Integration)</i>	457
5.5.3	<i>The Gauss Formulas (One-Dimensional Integration)</i>	461
5.5.4	<i>Integrations in Two and Three Dimensions</i>	464
5.5.5	<i>Appropriate Order of Numerical Integration</i>	465
5.5.6	<i>Reduced and Selective Integration</i>	476
5.5.7	<i>Exercises</i>	478
5.6	Computer Program Implementation of Isoparametric Finite Elements	480

CHAPTER SIX _____
Finite Element Nonlinear Analysis in Solid and Structural Mechanics 485

6.1	Introduction to Nonlinear Analysis	485
6.2	Formulation of the Continuum Mechanics Incremental Equations of Motion	497
6.2.1	<i>The Basic Problem</i>	498
6.2.2	<i>The Deformation Gradient, Strain, and Stress Tensors</i>	502

6.2.3	<i>Continuum Mechanics Incremental Total and Updated Lagrangian Formulations, Materially-Nonlinear-Only Analysis</i> , 522
6.2.4	<i>Exercises</i> , 529
6.3	Displacement-Based Isoparametric Continuum Finite Elements 538
6.3.1	<i>Linearization of the Principle of Virtual Work with Respect to Finite Element Variables</i> , 538
6.3.2	<i>General Matrix Equations of Displacement-Based Continuum Elements</i> , 540
6.3.3	<i>Truss and Cable Elements</i> , 543
6.3.4	<i>Two-Dimensional Axisymmetric, Plane Strain, and Plane Stress Elements</i> , 549
6.3.5	<i>Three-Dimensional Solid Elements</i> , 555
6.3.6	<i>Exercises</i> , 557
6.4	Displacement/Pressure Formulations for Large Deformations 561
6.4.1	<i>Total Lagrangian Formulation</i> , 561
6.4.2	<i>Updated Lagrangian Formulation</i> , 565
6.4.3	<i>Exercises</i> , 566
6.5	Structural Elements 568
6.5.1	<i>Beam and Axisymmetric Shell Elements</i> , 568
6.5.2	<i>Plate and General Shell Elements</i> , 575
6.5.3	<i>Exercises</i> , 578
6.6	Use of Constitutive Relations 581
6.6.1	<i>Elastic Material Behavior—Generalization of Hooke's Law</i> , 583
6.6.2	<i>Rubberlike Material Behavior</i> , 592
6.6.3	<i>Inelastic Material Behavior; Elastoplasticity, Creep, and Viscoplasticity</i> , 595
6.6.4	<i>Large Strain Elastoplasticity</i> , 612
6.6.5	<i>Exercises</i> , 617
6.7	Contact Conditions 622
6.7.1	<i>Continuum Mechanics Equations</i> , 622
6.7.2	<i>A Solution Approach for Contact Problems: The Constraint Function Method</i> , 626
6.7.3	<i>Exercises</i> , 628
6.8	Some Practical Considerations 628
6.8.1	<i>The General Approach to Nonlinear Analysis</i> , 629
6.8.2	<i>Collapse and Buckling Analyses</i> , 630
6.8.3	<i>The Effects of Element Distortions</i> , 636
6.8.4	<i>The Effects of Order of Numerical Integration</i> , 637
6.8.5	<i>Exercises</i> , 640

CHAPTER SEVEN

Finite Element Analysis of Heat Transfer, Field Problems, and Incompressible Fluid Flows

642

7.1	Introduction 642
7.2	Heat Transfer Analysis 642
7.2.1	<i>Governing Heat Transfer Equations</i> , 642
7.2.2	<i>Incremental Equations</i> , 646
7.2.3	<i>Finite Element Discretization of Heat Transfer Equations</i> , 651
7.2.4	<i>Exercises</i> , 659

7.3	Analysis of Field Problems	661
7.3.1	<i>Seepage</i>	662
7.3.2	<i>Incompressible Inviscid Flow</i>	663
7.3.3	<i>Torsion</i>	664
7.3.4	<i>Acoustic Fluid</i>	666
7.3.5	<i>Exercises</i>	670
7.4	Analysis of Viscous Incompressible Fluid Flows	671
7.4.1	<i>Continuum Mechanics Equations</i>	675
7.4.2	<i>Finite Element Governing Equations</i>	677
7.4.3	<i>High Reynolds and High Peclet Number Flows</i>	682
7.4.4	<i>Exercises</i>	691

CHAPTER EIGHT
Solution of Equilibrium Equations in Static Analysis 695

8.1	Introduction	695
8.2	Direct Solutions Using Algorithms Based on Gauss Elimination	696
8.2.1	<i>Introduction to Gauss Elimination</i>	697
8.2.2	<i>The LDL^T Solution</i>	705
8.2.3	<i>Computer Implementation of Gauss Elimination—The Active Column Solution</i>	708
8.2.4	<i>Cholesky Factorization, Static Condensation, Substructures, and Frontal Solution</i>	717
8.2.5	<i>Positive Definiteness, Positive Semidefiniteness, and the Sturm Sequence Property</i>	726
8.2.6	<i>Solution Errors</i>	734
8.2.7	<i>Exercises</i>	741
8.3	Iterative Solution Methods	745
8.3.1	<i>The Gauss-Seidel Method</i>	747
8.3.2	<i>Conjugate Gradient Method with Preconditioning</i>	749
8.3.3	<i>Exercises</i>	752
8.4	Solution of Nonlinear Equations	754
8.4.1	<i>Newton-Raphson Schemes</i>	755
8.4.2	<i>The BFGS Method</i>	759
8.4.3	<i>Load-Displacement-Constraint Methods</i>	761
8.4.4	<i>Convergence Criteria</i>	764
8.4.5	<i>Exercises</i>	765

CHAPTER NINE
Solution of Equilibrium Equations in Dynamic Analysis 768

9.1	Introduction	768
9.2	Direct Integration Methods	769
9.2.1	<i>The Central Difference Method</i>	770
9.2.2	<i>The Houbolt Method</i>	774
9.2.3	<i>The Wilson θ Method</i>	777

9.2.4	<i>The Newmark Method</i> , 780
9.2.5	<i>The Coupling of Different Integration Operators</i> , 782
9.2.6	<i>Exercises</i> , 784
9.3	Mode Superposition 785
9.3.1	<i>Change of Basis to Modal Generalized Displacements</i> , 785
9.3.2	<i>Analysis with Damping Neglected</i> , 789
9.3.3	<i>Analysis with Damping Included</i> , 796
9.3.4	<i>Exercises</i> , 801
9.4	Analysis of Direct Integration Methods 801
9.4.1	<i>Direct Integration Approximation and Load Operators</i> , 803
9.4.2	<i>Stability Analysis</i> , 806
9.4.3	<i>Accuracy Analysis</i> , 810
9.4.4	<i>Some Practical Considerations</i> , 813
9.4.5	<i>Exercises</i> , 822
9.5	Solution of Nonlinear Equations in Dynamic Analysis 824
9.5.1	<i>Explicit Integration</i> , 824
9.5.2	<i>Implicit Integration</i> , 826
9.5.3	<i>Solution Using Mode Superposition</i> , 828
9.5.4	<i>Exercises</i> , 829
9.6	Solution of Nonstructural Problems; Heat Transfer and Fluid Flows 830
9.6.1	<i>The α-Method of Time Integration</i> , 830
9.6.2	<i>Exercises</i> , 836

CHAPTER TEN**Preliminaries to the Solution of Eigenproblems****838**

10.1	Introduction 838
10.2	Fundamental Facts Used in the Solution of Eigensystems 840
10.2.1	<i>Properties of the Eigenvectors</i> , 841
10.2.2	<i>The Characteristic Polynomials of the Eigenproblem $\mathbf{K}\phi = \lambda\mathbf{M}\phi$ and of Its Associated Constraint Problems</i> , 845
10.2.3	<i>Shifting</i> , 851
10.2.4	<i>Effect of Zero Mass</i> , 852
10.2.5	<i>Transformation of the Generalized Eigenproblem $\mathbf{K}\phi = \lambda\mathbf{M}\phi$ to a Standard Form</i> , 854
10.2.6	<i>Exercises</i> , 860
10.3	Approximate Solution Techniques 861
10.3.1	<i>Static Condensation</i> , 861
10.3.2	<i>Rayleigh-Ritz Analysis</i> , 868
10.3.3	<i>Component Mode Synthesis</i> , 875
10.3.4	<i>Exercises</i> , 879
10.4	Solution Errors 880
10.4.1	<i>Error Bounds</i> , 880
10.4.2	<i>Exercises</i> , 886

CHAPTER ELEVEN _____
Solution Methods for Eigenproblems 887

11.1	Introduction	887
11.2	Vector Iteration Methods	889
11.2.1	<i>Inverse Iteration</i> ,	890
11.2.2	<i>Forward Iteration</i> ,	897
11.2.3	<i>Shifting in Vector Iteration</i> ,	899
11.2.4	<i>Rayleigh Quotient Iteration</i> ,	904
11.2.5	<i>Matrix Deflation and Gram-Schmidt Orthogonalization</i> ,	906
11.2.6	<i>Some Practical Considerations Concerning Vector Iterations</i> ,	909
11.2.7	<i>Exercises</i> ,	910
11.3	Transformation Methods	911
11.3.1	<i>The Jacobi Method</i> ,	912
11.3.2	<i>The Generalized Jacobi Method</i> ,	919
11.3.3	<i>The Householder-QR-Inverse Iteration Solution</i> ,	927
11.3.4	<i>Exercises</i> ,	937
11.4	Polynomial Iterations and Sturm Sequence Techniques	938
11.4.1	<i>Explicit Polynomial Iteration</i> ,	938
11.4.2	<i>Implicit Polynomial Iteration</i> ,	939
11.4.3	<i>Iteration Based on the Sturm Sequence Property</i> ,	943
11.4.4	<i>Exercises</i> ,	945
11.5	The Lanczos Iteration Method	945
11.5.1	<i>The Lanczos Transformation</i> ,	946
11.5.2	<i>Iteration with Lanczos Transformations</i> ,	950
11.5.3	<i>Exercises</i> ,	953
11.6	The Subspace Iteration Method	954
11.6.1	<i>Preliminary Considerations</i> ,	955
11.6.2	<i>Subspace Iteration</i> ,	958
11.6.3	<i>Starting Iteration Vectors</i> ,	960
11.6.4	<i>Convergence</i> ,	963
11.6.5	<i>Implementation of the Subspace Iteration Method</i> ,	964
11.6.6	<i>Exercises</i> ,	978

CHAPTER TWELVE _____
Implementation of the Finite Element Method 979

12.1	Introduction	979
12.2	Computer Program Organization for Calculation of System Matrices	980
12.2.1	<i>Nodal Point and Element Information Read-in</i> ,	981
12.2.2	<i>Calculation of Element Stiffness, Mass, and Equivalent Nodal Loads</i> ,	983
12.2.3	<i>Assemblage of Matrices</i> ,	983
12.3	Calculation of Element Stresses	987

12.4	Example Program STAP	988
12.4.1	<i>Data Input to Computer Program STAP</i> ,	988
12.4.2	<i>Listing of Program STAP</i> ,	995
12.5	Exercises and Projects	1009

References	1013
-------------------	-------------

Index	1029
--------------	-------------