

Contents

<i>Preface</i>	xi	
<i>Acknowledgements</i>	xiii	
1	Introduction to the equations of fluid dynamics and the finite element approximation	1
1.1	General remarks and classification of fluid dynamics problems discussed in this book	1
1.2	The governing equations of fluid dynamics	4
1.3	Inviscid, incompressible flow	11
1.4	Incompressible (or nearly incompressible) flows	13
1.5	Numerical solutions: weak forms, weighted residual and finite element approximation	14
1.6	Concluding remarks	26
	References	27
2	Convection dominated problems – finite element approximations to the convection–diffusion-reaction equation	28
2.1	Introduction	28
2.2	The steady-state problem in one dimension	31
2.3	The steady-state problem in two (or three) dimensions	45
2.4	Steady state – concluding remarks	49
2.5	Transients – introductory remarks	50
2.6	Characteristic-based methods	53
2.7	Taylor–Galerkin procedures for scalar variables	65
2.8	Steady-state condition	66
2.9	Non-linear waves and shocks	66
2.10	Treatment of pure convection	70
2.11	Boundary conditions for convection–diffusion	72
2.12	Summary and concluding remarks	73
	References	74
3	The characteristic-based split (CBS) algorithm. A general procedure for compressible and incompressible flow	79
3.1	Introduction	79
3.2	Non-dimensional form of the governing equations	81
3.3	Characteristic-based split (CBS) algorithm	82

3.4	Explicit, semi-implicit and nearly implicit forms	92
3.5	Artificial compressibility and dual time stepping	95
3.6	‘Circumvention’ of the Babuška–Brezzi (BB) restrictions	97
3.7	A single-step version	98
3.8	Boundary conditions	100
3.9	The performance of two-step and one-step algorithms on an inviscid problem	103
3.10	Concluding remarks	104
	References	105
4	Incompressible Newtonian laminar flows	110
4.1	Introduction and the basic equations	110
4.2	Use of the CBS algorithm for incompressible flows	112
4.3	Adaptive mesh refinement	123
4.4	Adaptive mesh generation for transient problems	131
4.5	Slow flows – mixed and penalty formulations	131
4.6	Concluding remarks	136
	References	136
5	Incompressible non-Newtonian flows	141
5.1	Introduction	141
5.2	Non-Newtonian flows – metal and polymer forming	141
5.3	Viscoelastic flows	154
5.4	Direct displacement approach to transient metal forming	163
5.5	Concluding remarks	165
	References	166
6	Free surface and buoyancy driven flows	170
6.1	Introduction	170
6.2	Free surface flows	170
6.3	Buoyancy driven flows	189
6.4	Concluding remarks	191
	References	193
7	Compressible high-speed gas flow	197
7.1	Introduction	197
7.2	The governing equations	198
7.3	Boundary conditions – subsonic and supersonic flow	199
7.4	Numerical approximations and the CBS algorithm	202
7.5	Shock capture	203
7.6	Variable smoothing	205
7.7	Some preliminary examples for the Euler equation	206
7.8	Adaptive refinement and shock capture in Euler problems	212
7.9	Three-dimensional inviscid examples in steady state	217
7.10	Transient two- and three-dimensional problems	226
7.11	Viscous problems in two dimensions	227
7.12	Three-dimensional viscous problems	240

7.13	Boundary layer-inviscid Euler solution coupling	241
7.14	Concluding remarks	242
	References	242
8	Turbulent flows	248
8.1	Introduction	248
8.2	Treatment of incompressible turbulent flows	251
8.3	Treatment of compressible flows	264
8.4	Large eddy simulation	267
8.5	Detached Eddy Simulation (DES)	270
8.6	Direct Numerical Simulation (DNS)	270
8.7	Concluding remarks	271
	References	271
9	Generalized flow through porous media	274
9.1	Introduction	274
9.2	A generalized porous medium flow approach	275
9.3	Discretization procedure	279
9.4	Non-isothermal flows	282
9.5	Forced convection	282
9.6	Natural convection	284
9.7	Concluding remarks	288
	References	289
10	Shallow water problems	292
10.1	Introduction	292
10.2	The basis of the shallow water equations	293
10.3	Numerical approximation	297
10.4	Examples of application	298
10.5	Drying areas	310
10.6	Shallow water transport	311
10.7	Concluding remarks	313
	References	314
11	Long and medium waves	317
11.1	Introduction and equations	317
11.2	Waves in closed domains – finite element models	318
11.3	Difficulties in modelling surface waves	320
11.4	Bed friction and other effects	320
11.5	The short-wave problem	320
11.6	Waves in unbounded domains (exterior surface wave problems)	321
11.7	Unbounded problems	324
11.8	Local Non-Reflecting Boundary Conditions (NRBCs)	324
11.9	Infinite elements	327
11.10	Mapped periodic (unconjugated) infinite elements	327
11.11	Ellipsoidal type infinite elements of Burnett and Holford	328
11.12	Wave envelope (or conjugated) infinite elements	330
11.13	Accuracy of infinite elements	332

11.14	Trefftz type infinite elements	332
11.15	Convection and wave refraction	333
11.16	Transient problems	335
11.17	Linking to exterior solutions (or DtN mapping)	336
11.18	Three-dimensional effects in surface waves	338
11.19	Concluding remarks	344
	References	344
12	Short waves	349
12.1	Introduction	349
12.2	Background	349
12.3	Errors in wave modelling	351
12.4	Recent developments in short wave modelling	351
12.5	Transient solution of electromagnetic scattering problems	352
12.6	Finite elements incorporating wave shapes	352
12.7	Refraction	364
12.8	Spectral finite elements for waves	372
12.9	Discontinuous Galerkin finite elements (DGFE)	374
12.10	Concluding remarks	378
	References	378
13	Computer implementation of the CBS algorithm	382
13.1	Introduction	382
13.2	The data input module	383
13.3	Solution module	384
13.4	Output module	387
	References	387
Appendix A	Non-conservative form of Navier–Stokes equations	389
Appendix B	Self-adjoint differential equations	391
Appendix C	Postprocessing	392
Appendix D	Integration formulae	395
Appendix E	Convection–diffusion equations: vector-valued variables	397
Appendix F	Edge-based finite element formulation	405
Appendix G	Multigrid method	407
Appendix H	Boundary layer–inviscid flow coupling	409
Appendix I	Mass-weighted averaged turbulence transport equations	413
Author index		417
Subject index		427